Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 86(3): 288-303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568248

ABSTRACT

In this study, the occurrence of phthalates in the municipal water supply of Nagpur City, India, was studied for the first time. The study aimed to provide insights into the extent of phthalate contamination and identify potential sources of contamination in the city's tap water. We analyzed fifteen phthalates and the total concentration (∑15phthalates) ranged from 0.27 to 76.36 µg L-1. Prominent phthalates identified were di-n-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and di-nonyl phthalate (DNP). Out of the fifteen phthalates analyzed, DEHP showed the highest concentration in all the samples with the median concentration of 2.27 µg L-1, 1.39 µg L-1, 1.83 µg L-1, 2.02 µg L-1, respectively in Butibori, Gandhibaag, Civil Lines, and Kalmeshwar areas of the city. In 30% of the tap water samples, DEHP was found higher than the EPA maximum contaminant level of 6 µg L-1. The average daily intake (ADI) of phthalates via consumption of tap water was higher for adults (median: 0.25 µg kg-1 day-1) compared to children (median: 0.07 µg kg-1 day-1). The hazard index (HI) calculated for both adults and children was below the threshold level, indicating no significant health risks from chronic toxic risk. However, the maximum carcinogenic risk (CR) for adults (8.44 × 10-3) and children (7.73 × 10-3) was higher than the threshold level. Knowledge of the sources and distribution of phthalate contamination in municipal drinking water is crucial for effective contamination control and management strategies.


Subject(s)
Diethylhexyl Phthalate , Drinking Water , Phthalic Acids , Child , Adult , Humans , Phthalic Acids/analysis , Water Supply , Risk Assessment
2.
Chemosphere ; 352: 141213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336040

ABSTRACT

Discharge of textile dye effluents into water bodies is creating stress to aquatic life and contaminating water resources. In this study, a new biopolymer adsorbent silk fibroin (SF) was prepared from Bombyx mori silk fibroin (SF) and used for removal of Solochrome Black-T (SB-T) from water. This innovative adsorbent exhibits an exceptional adsorption capacity of 20.08 mg/g, achieving a removal efficiency of approximately 98.6 % within 60 min. Notably, the powdered SF adsorbent demonstrates rapid kinetics, surpassing the performance of previously reported similar adsorbents in adsorption capacity and reaction speed. The molecular weight and particle diameter of the material were observed to be > 1.243 kDa and 3 µm, respectively. The experimental investigations were performed on different parameters, viz., adsorbent dosage, contact time, repeatability, and desorption-adsorption study. The experimental data well fit for the Langmuir model (R2 = 0.937, qmax = 20.08 mg/g) and the pseudo-second-order kinetics (R2 = 0.921 and qe = 1.496 mg/g). Compared to the adsorbents reported in the literature, the newly prepared SF showed high adsorption capacity and faster kinetics to address real-life situations. The novelty of this work extends beyond its remarkable adsorption capabilities. The SF adsorbent offers a cost-effective, sustainable solution and regenerable adsorption material with minimal negative environmental impacts. This regenerability, with its versatility and broad applicability, positions powdered SF fibroin as a transformative technology in water treatment and environmental protection.


Subject(s)
Bombyx , Fibroins , Water Pollutants, Chemical , Water Purification , Animals , Silk , Powders , Adsorption , Kinetics , Hydrogen-Ion Concentration
3.
Ann Med ; 55(2): 2253733, 2023.
Article in English | MEDLINE | ID: mdl-37672487

ABSTRACT

BACKGROUND: The multi-country mpox outbreak across the globe has led to the systematic surveillance of mpox cases in India. During the surveillance of mpox, we encountered cases of Varicella Zoster Virus (VZV) in suspected mpox cases amongst children & adults. This study focused on the genomic characterization of VZV in India. METHODS: A total of 331 mpox suspected cases were tested for VZV through real-time PCR, and the positive samples were subjected to next-generation sequencing to retrieve the whole genome of VZV using CLC genomics software. Phylogenetic analysis has been done in MEGA 11.0 software to identify circulating clades. RESULT: Of the 331 suspected cases, 28 cases with vesicular rashes were found to be positive for VZV. The maximum genome could be retrieved from the clinical specimens of 16 cases with coverage greater than 98% when mapped with reference strain Dumas (NC 001348). The phylogenetic analyses of these sequences determined the circulation of clades 1, 5, and 9 in India. Further, the sequence analysis demonstrated non-synonymous single nucleotide polymorphism (SNPs) among specific ORF of VZV including ORF 14, ORF 22, ORF 36, ORF 37 and ORF 51. Although clade 1 and 5 has been reported earlier, the circulation of clade 9 of VZV has been determined for the first time in India. CONCLUSION: Although the circulation of different clades of VZV was reported from India, the presence of clade 9 was detected for the first time during the mpox surveillance.


Subject(s)
Herpesvirus 3, Human , Mpox (monkeypox) , Adult , Child , Humans , Herpesvirus 3, Human/genetics , Phylogeny , Genomics , India/epidemiology
4.
Int J Environ Health Res ; : 1-17, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36242556

ABSTRACT

Synthetic polymers with additives are used in the manufacturing of face masks (FMs); hence, FMs could be a potential source of exposure to phthalic acid esters (PAEs). India stands second in the world in terms of the FMs usage since the beginning of Covid-19 pandemic. However, little is known about the PAEs content of FMs used in India. Some PAEs, such as DEHP and DBP are suspected endocrine disrupting chemicals (EDCs); hence, wearing FM may increase the risk of exposure to these EDCs. In this study, we collected 91 samples of FMs from eight Indian cities and analyzed for five PAEs viz. DMP, DEP, DBP, BBP, and DEHP. The PAEs contents in FMs ranged from 101.79 to 27,948.64 ng/g. The carcinogenic risk of N 95 with filter, N-95, and cloth masks was higher than the threshold levels. The findings indicate the need to control PAEs in FMs through regulatory actions.

SELECTION OF CITATIONS
SEARCH DETAIL
...